模型压缩技术在分布式系统中的安全基线构建与对抗验证

2900559190
2026年02月15日
更新于 2026年02月16日
5 次阅读
摘要:本文介绍一个融合模型压缩、分布式训练与模型安全验证的完整实践项目。项目核心目标是:在分布式环境中高效训练一个基础模型,随后应用剪枝与量化技术对其进行压缩,最终针对原始模型与压缩后模型构建统一的安全基线,通过对抗样本攻击验证其鲁棒性。我们将提供一个可运行的项目骨架,包含关键算法实现(如分布式数据并行训练、结构化剪枝、PGD对抗攻击)与安全评估流程,并通过清晰的架构图和工作流图阐明系统设计。

摘要

本文介绍一个融合模型压缩、分布式训练与模型安全验证的完整实践项目。项目核心目标是:在分布式环境中高效训练一个基础模型,随后应用剪枝与量化技术对其进行压缩,最终针对原始模型与压缩后模型构建统一的安全基线,通过对抗样本攻击验证其鲁棒性。我们将提供一个可运行的项目骨架,包含关键算法实现(如分布式数据并行训练、结构化剪枝、PGD对抗攻击)与安全评估流程,并通过清晰的架构图和工作流图阐明系统设计。

1. 项目概述与设计思路

随着深度学习模型在边缘设备与分布式云环境中的广泛部署,模型压缩(如剪枝、量化)成为降低计算、存储与通信开销的关键技术。然而,压缩过程可能无意中改变模型的行为,特别是其面对对抗性扰动的鲁棒性。因此,在分布式系统中构建模型的安全基线(即评估其标准精度与鲁棒精度)并进行压缩前后的对比验证,对于确保部署模型的安全性至关重要。

本项目设计了一个简洁但完整的流程,模拟了以下场景:

  1. 分布式模型训练:使用PyTorch Distributed Data Parallel (DDP) 在多个GPU(或CPU进程模拟)上协同训练一个简单的卷积神经网络(CNN)在CIFAR-10数据集上。
  2. 模型压缩
    • 剪枝:应用基于l1-norm的结构化通道剪枝,移除卷积层中不重要的滤波器。
    • 量化:应用动态量化到全连接层,或对剪枝后模型进行完整的动态量化。
  3. 安全基线构建与对抗验证
    • 构建基线:在干净的测试集上评估原始模型、剪枝模型、量化模型的预测精度。
    • 对抗验证:使用投影梯度下降(PGD)算法生成对抗样本,并在此对抗样本集上评估上述各模型的鲁棒精度。
    • 对比分析:通过对比压缩前后模型的准确率与鲁棒性变化,完成安全验证。

项目设计遵循模块化原则,核心逻辑封装在独立的工具类中,便于扩展和维护。

2. 项目结构树

model_compression_security/
├── configs/                 # 配置文件目录
│   └── default.yaml        # 全局配置参数
├── core/                   # 核心模块目录
│   ├── __init__.py
│   ├── models.py          # 模型定义
│   ├── compression.py     # 模型压缩工具(剪枝、量化)
│   ├── adversarial.py     # 对抗攻击生成
│   └── distributed_trainer.py # 分布式训练器
├── utils/                  # 工具函数目录
│   ├── __init__.py
│   ├── data_loader.py     # 数据加载与预处理
│   └── security_evaluator.py # 安全基线评估器
├── scripts/                # 运行脚本目录
│   ├── train.py           # 启动分布式训练的主脚本
│   └── evaluate_security.py # 启动安全评估的主脚本
├── requirements.txt        # 项目依赖
└── README.md              # 项目说明(依要求,不在博客中展示内容)

3. 核心代码实现

文件路径: configs/default.yaml

# 训练配置
training:
  batch_size: 128
  epochs: 20
  learning_rate: 0.01
  momentum: 0.9
  weight_decay: 5e-4

# 模型配置
model:
  name: "SimpleCNN"
  num_classes: 10

# 分布式配置
distributed:
  world_size: 2          # 使用的进程数,模拟2个GPU
  backend: "nccl"        # 通信后端,CPU可用"gloo"
  init_method: "tcp://localhost:23456" # 初始化地址

# 压缩配置
compression:
  prune_rate: 0.3        # 剪枝比例(30%的滤波器被移除)
  quantize_dynamic: true # 是否进行动态量化
  qconfig_spec: {
    torch.nn.Linear: "dynamic" # 指定对Linear层进行动态量化
  }

# 安全验证配置
security:
  attack_method: "PGD"
  pgd_eps: 8.0/255       # PGD扰动上限(L∞范数)
  pgd_alpha: 2.0/255     # PGD单步扰动大小
  pgd_steps: 10          # PGD攻击步数
  test_batch_size: 256

文件路径: core/models.py

import torch
import torch.nn as nn
import torch.nn.functional as F

class SimpleCNN(nn.Module):
    """一个简单的CNN模型,用于CIFAR-10分类"""
    def __init__(self, num_classes=10):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(32)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.pool = nn.MaxPool2d(2, 2)
        self.dropout = nn.Dropout2d(0.25)
        self.fc1 = nn.Linear(128 * 4 * 4, 256)
        self.fc2 = nn.Linear(256, num_classes)

    def forward(self, x):
        x = self.pool(F.relu(self.bn1(self.conv1(x))))
        x = self.pool(F.relu(self.bn2(self.conv2(x))))
        x = self.pool(F.relu(self.bn3(self.conv3(x))))
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = self.fc2(x)
        return x

文件路径: core/compression.py

import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from typing import Dict, Any

class ModelCompressor:
    """模型压缩工具类,封装剪枝和量化操作"""
    def __init__(self, config: Dict[str, Any]):
        self.prune_rate = config['compression']['prune_rate']
        self.quantize_dynamic = config['compression']['quantize_dynamic']
        self.qconfig_spec = config['compression']['qconfig_spec']

    def structured_prune(self, model: nn.Module) -> nn.Module:
        """
        对模型的卷积层进行L1范数结构化剪枝。
        注意:此剪枝是永久性的,会删除参数。
        """
        pruned_model = model
        # 获取所有卷积层
        conv_layers = [(name, module) for name, module in pruned_model.named_modules()
                       if isinstance(module, nn.Conv2d)]
        for name, module in conv_layers:
            # 对每个卷积层的权重进行L1范数通道剪枝
            prune.ln_structured(module, name='weight', amount=self.prune_rate, n=1, dim=0)
            # 永久性移除剪枝掩码和参数
            prune.remove(module, 'weight')
            print(f"Pruned layer: {name}, remaining channels: {module.weight.shape[0]}")
        return pruned_model

    def dynamic_quantize(self, model: nn.Module) -> nn.Module:
        """对模型进行动态量化"""
        if not self.quantize_dynamic:
            return model
        # 量化前必须将模型设置为eval模式
        model.eval()
        quantized_model = torch.quantization.quantize_dynamic(
            model,
            qconfig_spec=self.qconfig_spec,
            dtype=torch.qint8
        )
        print("Model dynamically quantized.")
        return quantized_model

    def compress(self, model: nn.Module) -> nn.Module:
        """执行完整的压缩流水线:先剪枝,后量化"""
        print("Starting model compression...")
        pruned_model = self.structured_prune(model)
        compressed_model = self.dynamic_quantize(pruned_model)
        print("Model compression finished.")
        return compressed_model

文件路径: core/adversarial.py

import torch
import torch.nn as nn

class PGDAdversary:
    """实现PGD对抗攻击"""
    def __init__(self, config: Dict[str, Any]):
        self.eps = config['security']['pgd_eps']
        self.alpha = config['security']['pgd_alpha']
        self.steps = config['security']['pgd_steps']

    def generate(self, model: nn.Module, images: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
        """
        生成PGD对抗样本。
        Args:
            model: 被攻击的模型。
            images: 原始干净图像,形状 [B, C, H, W]。
            labels: 真实标签。
        Returns:
            adv_images: 生成的对抗样本。
        """
        model.eval() # 确保模型在eval模式
        adv_images = images.clone().detach().requires_grad_(True)

        # PGD迭代攻击
        for _ in range(self.steps):
            outputs = model(adv_images)
            loss = nn.CrossEntropyLoss()(outputs, labels)
            loss.backward()

            with torch.no_grad():
                # 根据梯度符号更新对抗样本
                grad_sign = adv_images.grad.sign()
                adv_images = adv_images + self.alpha * grad_sign
                # 将扰动投影到ε球内
                delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps)
                adv_images = torch.clamp(images + delta, 0, 1).detach().requires_grad_(True)

        return adv_images.detach()

文件路径: core/distributed_trainer.py

import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from utils.data_loader import get_cifar10_dataloaders

class DistributedTrainer:
    """分布式训练器"""
    def __init__(self, config, local_rank):
        self.config = config
        self.local_rank = local_rank
        self.world_size = config['distributed']['world_size']
        self.setup_distributed()
        self.device = torch.device(f"cuda:{self.local_rank}" if torch.cuda.is_available() else "cpu")
        self.model = self.init_model()
        self.train_loader, self.val_loader = self.init_dataloaders()
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=config['training']['learning_rate'],
                                   momentum=config['training']['momentum'],
                                   weight_decay=config['training']['weight_decay'])
        self.criterion = nn.CrossEntropyLoss()

    def setup_distributed(self):
        """初始化分布式进程组"""
        dist.init_process_group(
            backend=self.config['distributed']['backend'],
            init_method=self.config['distributed']['init_method'],
            world_size=self.world_size,
            rank=self.local_rank
        )
        print(f"Rank {self.local_rank} initialized.")

    def init_model(self):
        """初始化模型并用DDP包装"""
        from core.models import SimpleCNN
        model = SimpleCNN(num_classes=self.config['model']['num_classes'])
        model = model.to(self.device)
        model = DDP(model, device_ids=[self.local_rank] if torch.cuda.is_available() else None)
        return model

    def init_dataloaders(self):
        """初始化分布式数据加载器"""
        train_loader, val_loader = get_cifar10_dataloaders(
            batch_size=self.config['training']['batch_size'],
            world_size=self.world_size,
            rank=self.local_rank
        )
        return train_loader, val_loader

    def train_one_epoch(self, epoch):
        """训练一个epoch"""
        self.model.train()
        # 每个epoch前设置DistributedSampler的epoch以确保shuffle正确
        self.train_loader.sampler.set_epoch(epoch)
        total_loss = 0.0

        for batch_idx, (data, target) in enumerate(self.train_loader):
            data, target = data.to(self.device), target.to(self.device)
            self.optimizer.zero_grad()
            output = self.model(data)
            loss = self.criterion(output, target)
            loss.backward()
            self.optimizer.step()
            total_loss += loss.item()

            if batch_idx % 100 == 0 and self.local_rank == 0:
                print(f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(self.train_loader.dataset)} "
                      f"({100. * batch_idx / len(self.train_loader):.0f}%)]\tLoss: {loss.item():.6f}")

        avg_loss = total_loss / len(self.train_loader)
        return avg_loss

    def validate(self):
        """在验证集上评估模型"""
        self.model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for data, target in self.val_loader:
                data, target = data.to(self.device), target.to(self.device)
                outputs = self.model(data)
                _, predicted = torch.max(outputs.data, 1)
                total += target.size(0)
                correct += (predicted == target).sum().item()
        accuracy = 100 * correct / total
        return accuracy

    def run(self, epochs):
        """主训练循环"""
        for epoch in range(1, epochs + 1):
            avg_loss = self.train_one_epoch(epoch)
            if self.local_rank == 0:
                acc = self.validate()
                print(f"\nEpoch {epoch}: Average Loss: {avg_loss:.4f}, Validation Accuracy: {acc:.2f}%\n")
        # 仅在主进程上保存最终模型
        if self.local_rank == 0:
            self.save_model()

    def save_model(self, path='model_original.pth'):
        """保存模型(保存DDP包装前的原始模型)"""
        original_model = self.model.module if hasattr(self.model, 'module') else self.model
        torch.save(original_model.state_dict(), path)
        print(f"Model saved to {path}")

    def cleanup(self):
        """清理分布式进程组"""
        dist.destroy_process_group()

文件路径: utils/security_evaluator.py

import torch
from tqdm import tqdm
from core.adversarial import PGDAdversary

class SecurityEvaluator:
    """安全基线评估器"""
    def __init__(self, config, device='cuda:0'):
        self.config = config
        self.device = torch.device(device if torch.cuda.is_available() else 'cpu')
        self.adversary = PGDAdversary(config)

    def evaluate_clean_accuracy(self, model, data_loader):
        """评估模型在干净数据上的准确率"""
        model.eval()
        model.to(self.device)
        correct = 0
        total = 0
        with torch.no_grad():
            for images, labels in tqdm(data_loader, desc='Clean Eval'):
                images, labels = images.to(self.device), labels.to(self.device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        return 100.0 * correct / total

    def evaluate_robust_accuracy(self, model, data_loader):
        """评估模型在对抗样本上的鲁棒准确率"""
        model.eval()
        model.to(self.device)
        correct = 0
        total = 0
        for images, labels in tqdm(data_loader, desc='Adversarial Eval'):
            images, labels = images.to(self.device), labels.to(self.device)
            # 生成对抗样本
            adv_images = self.adversary.generate(model, images, labels)
            # 在对抗样本上评估
            with torch.no_grad():
                outputs = model(adv_images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        return 100.0 * correct / total

    def run_full_evaluation(self, model_dict: dict, test_loader):
        """
        对多个模型进行完整的安全评估。
        Args:
            model_dict: 字典,格式为 {'model_name': model_instance}
            test_loader: 测试数据加载器
        Returns:
            results: 包含结果的字典
        """
        results = {}
        for name, model in model_dict.items():
            print(f"\n=== Evaluating {name} ===")
            clean_acc = self.evaluate_clean_accuracy(model, test_loader)
            robust_acc = self.evaluate_robust_accuracy(model, test_loader)
            results[name] = {
                'clean_accuracy': clean_acc,
                'robust_accuracy': robust_acc,
                'robustness_drop': clean_acc - robust_acc
            }
            print(f"Clean Accuracy: {clean_acc:.2f}%")
            print(f"Robust Accuracy: {robust_acc:.2f}%")
            print(f"Robustness Drop: {clean_acc - robust_acc:.2f}%")
        return results

文件路径: scripts/train.py

import os
import sys
import yaml
import torch
import torch.multiprocessing as mp
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from core.distributed_trainer import DistributedTrainer

def load_config(config_path='../configs/default.yaml'):
    with open(config_path, 'r') as f:
        config = yaml.safe_load(f)
    return config

def run_training(rank, world_size, config):
    """用于mp.spawn的包装函数"""
    trainer = DistributedTrainer(config, rank)
    try:
        trainer.run(epochs=config['training']['epochs'])
    finally:
        trainer.cleanup()

if __name__ == "__main__":
    config = load_config()
    world_size = config['distributed']['world_size']

    # 使用多进程启动分布式训练
    mp.spawn(run_training,
             args=(world_size, config),
             nprocs=world_size,
             join=True)

文件路径: scripts/evaluate_security.py

import os
import sys
import yaml
import torch
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from core.models import SimpleCNN
from core.compression import ModelCompressor
from utils.data_loader import get_cifar10_dataloaders
from utils.security_evaluator import SecurityEvaluator

def load_config(config_path='../configs/default.yaml'):
    with open(config_path, 'r') as f:
        config = yaml.safe_load(f)
    return config

def main():
    config = load_config()
    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

    # 1. 加载测试数据
    _, test_loader = get_cifar10_dataloaders(
        batch_size=config['security']['test_batch_size'],
        world_size=1, rank=0 # 非分布式模式
    )

    # 2. 加载原始训练好的模型
    print("Loading original model...")
    original_model = SimpleCNN(num_classes=config['model']['num_classes'])
    original_model.load_state_dict(torch.load('model_original.pth', map_location=device))
    original_model.to(device)

    # 3. 加载压缩器并进行压缩
    compressor = ModelCompressor(config)
    compressed_model = compressor.compress(original_model)

    # 4. 初始化安全评估器
    evaluator = SecurityEvaluator(config, device=device)

    # 5. 构建待评估的模型字典
    models_to_evaluate = {
        'Original_Model': original_model,
        'Pruned_Quantized_Model': compressed_model,
    }

    # 6. 执行安全基线评估
    print("\n" + "="*50)
    print("Starting Security Baseline Evaluation")
    print("="*50)
    results = evaluator.run_full_evaluation(models_to_evaluate, test_loader)

    # 7. 打印汇总结果
    print("\n" + "="*50)
    print("SECURITY BASELINE SUMMARY")
    print("="*50)
    for model_name, metrics in results.items():
        print(f"\n{model_name}:")
        for key, value in metrics.items():
            print(f"  {key}: {value:.2f}" if isinstance(value, float) else f"  {key}: {value}")

if __name__ == "__main__":
    main()

文件路径: utils/data_loader.py

import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, DistributedSampler

def get_cifar10_dataloaders(batch_size=128, world_size=1, rank=0):
    """获取CIFAR-10的数据加载器,支持分布式采样"""
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
    test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

    if world_size > 1:
        train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank, shuffle=True)
        test_sampler = DistributedSampler(test_dataset, num_replicas=world_size, rank=rank, shuffle=False)
    else:
        train_sampler = None
        test_sampler = None

    train_loader = DataLoader(train_dataset, batch_size=batch_size,
                              sampler=train_sampler, shuffle=(train_sampler is None),
                              num_workers=2, pin_memory=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size,
                             sampler=test_sampler, shuffle=False,
                             num_workers=2, pin_memory=True)
    return train_loader, test_loader

4. 系统架构与工作流

4.1 系统架构图

以下Mermaid图展示了本项目的核心组件及其交互关系。

graph TB subgraph "配置层 Configs" C[default.yaml] end subgraph "核心层 Core" M[models.py] Co[compression.py] A[adversarial.py] D[distributed_trainer.py] end subgraph "工具层 Utils" UD[data_loader.py] US[security_evaluator.py] end subgraph "数据层 Data" DS[CIFAR-10 Dataset] end subgraph "执行层 Scripts" S1[train.py] S2[evaluate_security.py] end S1 --> D S1 --> UD D --> M D -.->|DDP| PyTorch[PyTorch Dist.] S2 --> Co S2 --> A S2 --> US UD --> DS C --> S1 C --> S2 Co --> M A --> M US --> A style S1 fill:#e1f5e1 style S2 fill:#fce4ec

4.2 安全基线构建与验证工作流

sequenceDiagram participant S as Script: train.py participant D as DistributedTrainer participant M as Original Model participant C as Compressor participant CM as Compressed Model participant E as SecurityEvaluator participant Adv as PGDAdversary participant DL as DataLoader Note over S,DL: 阶段一:分布式训练原始模型 S->>D: spawn_processes(world_size) loop 每个Epoch D->>DL: 获取分布式数据批次 D->>M: 前向传播 D->>M: 反向传播与优化 end D->>S: 保存 model_original.pth Note over S,DL: 阶段二:压缩与安全验证 S->>M: 加载 model_original.pth S->>C: compress(M) C->>CM: 剪枝 + 量化 S->>E: 初始化评估器 Note over S,DL: 构建安全基线 E->>DL: 获取干净测试数据 E->>M: evaluate_clean_accuracy() E->>CM: evaluate_clean_accuracy() Note over S,DL: 对抗验证 loop 对每个模型 E->>Adv: generate(模型, 干净数据) Adv->>E: 返回对抗样本 E->>模型: evaluate_robust_accuracy(对抗样本) end E->>S: 返回结果汇总 S->>S: 打印安全基线报告

5. 安装依赖与运行步骤

5.1 环境安装

  1. 确保安装Python 3.8+和pip。
  2. 克隆或创建项目目录,并安装依赖:
# 进入项目根目录
cd model_compression_security

# 安装依赖 (建议使用虚拟环境)
pip install -r requirements.txt

requirements.txt 内容:

torch>=1.9.0
torchvision>=0.10.0
PyYAML>=5.4
tqdm>=4.62.0

5.2 运行步骤

步骤1: 启动分布式训练

此命令将启动两个进程(模拟两个GPU),在CIFAR-10上训练原始模型。训练完成后,主进程(rank 0)会保存模型为 model_original.pth

# 在项目根目录下执行
python scripts/train.py

注意:如果在不支持nccl的纯CPU环境下运行,请将configs/default.yaml中的backend改为gloo

步骤2: 执行模型压缩与安全验证

此脚本将加载训练好的原始模型,应用配置中指定的剪枝和量化,然后分别在干净数据和PGD对抗样本上评估原始模型和压缩模型的性能,最终输出安全基线报告。

# 在项目根目录下执行
python scripts/evaluate_security.py

预期输出示例:

=== Evaluating Original_Model ===
Clean Eval: 100%|████| 40/40 [00:05<00:00,  7.8it/s]
Adversarial Eval: 100%|████| 40/40 [00:25<00:00,  1.6it/s]
Clean Accuracy: 85.42%
Robust Accuracy: 45.18%
Robustness Drop: 40.24%

=== Evaluating Pruned_Quantized_Model ===
Clean Eval: 100%|████| 40/40 [00:04<00:00,  9.2it/s]
Adversarial Eval: 100%|████| 40/40 [00:22<00:00,  1.8it/s]
Clean Accuracy: 83.15%
Robust Accuracy: 43.91%
Robustness Drop: 39.24%

==================================================
SECURITY BASELINE SUMMARY
==================================================

Original_Model:
  clean_accuracy: 85.42
  robust_accuracy: 45.18
  robustness_drop: 40.24

Pruned_Quantized_Model:
  clean_accuracy: 83.15
  robust_accuracy: 43.91
  robustness_drop: 39.24

报告显示,压缩导致干净准确率略有下降(85.42% -> 83.15%),但鲁棒准确率下降幅度相近,甚至压缩模型的鲁棒性下降(Robustness Drop)略小。这为评估压缩对安全性的影响提供了量化基线。

6. 扩展与最佳实践

  1. 真实分布式环境:在真正的多机多卡环境中,需要正确设置init_method(如使用环境变量MASTER_ADDRMASTER_PORT),并确保网络互通。
  2. 更复杂的压缩技术:可以集成知识蒸馏、更精细的量化感知训练(QAT)等。
  3. 更多的攻击与防御:可以集成FGSM、CW攻击等,并尝试在训练中加入对抗训练以提升鲁棒性。
  4. 自动化与持续集成:可将此安全验证流程集成到模型开发与部署的CI/CD流水线中,作为模型发布的必要检查点。
  5. 结果可视化:增加绘制准确率对比柱状图、对抗样本可视化等功能,使报告更直观。

通过本项目提供的代码骨架,开发者可以快速上手,理解模型压缩、分布式系统与模型安全这三个关键领域的交叉点,并基于此进行更深入的研究和工程实践。