GDA 神经网络训练全流程(PyQt5 GUI)
12
浏览量
0
下载量
0
收藏数
项目描述
神经网络(Neural Network, NN)在图像识别、语音识别、自然语言处理等领域已广泛应用。其训练核心在于**通过梯度下降(Gradient Descent, GD)最小化损失函数**,不断优化网络权重与偏置参数。然而,在实际训练中,常面临以下问题:
1. **梯度消失或爆炸**:导致训练停滞或收敛不稳定;
2. **局部最优**:初始权重不佳时,易陷入次优解;
3. **学习率敏感**
Algorithm: Hybrid IGA-GD Neural Network Training
Input: Training data D, population size N, generations G
Output: Optimized NN parameters w*, η*
Initialize population P = { (w_i, η_i) } randomly
for gen in range(G):
for each individual (w_i, η_i) in P:
L_i, Acc_i = EvaluateNN(D, w_i, η_i)
F_i = α*(1 - L_i/L_max) + (1-α)*Acc_i
Select top individuals based on F_i
Perform gradient-guided crossover
Apply entropy-based mutation
Update population P
Return best individual (w*, η*)
Train NN using GD initialized with (w*, η*)